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ABSTRACT
The Fermi velocity vF is one of the primary characteristics of any conductor, including any superconductor. For conductors at ambient
pressure, several experimental techniques have been developed to measure vF , and, for instance, Zhou et al. [Nature 423, 398 (2003)] reported
that high-Tc cuprates exhibited a universal nodal Fermi velocity vF,univ = (2.7 ± 0.5) × 105 m/s. However, there have been no measurements
of vF in highly compressed near-room-temperature superconductors (NRTS), owing to experimental challenges. Here, to answer the question
of the existence of a universal Fermi velocity in NRTS materials, we analyze the full inventory of data on the ground-state upper critical
field Bc2(0) for these materials and find that this class of superconductors exhibits a universal Fermi velocity vF,univ = (1/1.3) × [2Δ(0)/kBTc]
× 105 m/s, where Δ(0) is the ground-state amplitude of the energy gap. The ratio 2Δ(0)/kBTc varies within a narrow range 3.2 ≤ 2Δ(0)/kBTc
≤ 5, and so vF,univ in NRTS materials lies in the range 2.5 × 105 m/s ≤ vF,univ ≤ 3.8 × 105 m/s, which is similar to the range of values found for
the high-Tc cuprate counterparts of these materials.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0091446

I. INTRODUCTION

Since pivotal experimental discovery of the first near-room-
temperature superconductor (NRTS) H3S by Drozdov et al.,1
nearly two dozen highly compressed hydrogen-rich supercon-
ducting phases have been synthesized in binary and ternary
systems.2–17 Experimental studies of NRTS are well supported by
first-principles calculations,18–30 but experimental characterizations
of NRTS phases are limited by the narrow range of techniques that
are available for materials inside diamond anvil cells (DACs).25–27

These comprise x-ray diffraction (XRD) phase analysis, Raman spec-
troscopy, and magnetoresistance measurements,31–35 although, with
the use of some advanced techniques, Hall effect measurements can
also be performed.31 Because of this, only two characteristic val-
ues of the superconducting state of the NRTS phases are commonly
extracted from experimental data, namely, the transition temper-
ature Tc and the extrapolated value for the ground-state upper
critical field Bc2(0) or the ground-state superconducting coherence
length ξ(0), which can be derived from the Ginzburg–Landau36

expression

ξ(0) =
√

ϕ0

2πBc2(0)
, (1)

where ϕ0 = h/2e is the superconducting flux quantum, with h being
Planck’s constant and e the electric charge of the electron.

Other important parameters of NRTS materials, among which
we can mention the Fermi velocity vF , have not been measured to
date, owing to the challenges of performing such measurements on
samples inside DACs. However, considering that all NRTS super-
conductors are hydrides, there is an expectation that these materials
will exhibit a universal Fermi velocity vF,univ, as has been discovered
in cuprates, for which vF,univ = (2.7 ± 0.5) × 105 m/s, as reported by
Zhou et al.37 (see Fig. 1).

The theoretical motivation for the quest for a universal Fermi
velocity in NRTS comes, on the one hand, from the recent under-
standing38 that sulfur in H3S is analogous to the oxygen in
cuprates, and, on the other hand, from the fact that highly com-
pressed hydrides fit nicely with the main global scaling laws for
superconductors.39–43 However, it should be noted that an analysis
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FIG. 1. Universal nodal Fermi velocity vF,univ = (2.7 ± 0.5) × 105 m/s for
cuprate superconductors. These are the raw data reported by Zhou et al.37 for
(La2−xSrx )CuO4 (LSCO), (La2−x−y Ndy Srx )CuO4 (Nd-LSCO), Bi2Sr2CaCu2O8 (Bi-
2212), Bi2Sr2CuO6 (Bi-2201), (Ca2−xNax )CuO2Cl2 (Na-CCOC), and Tl2Ba2CuO6
(Tl-2201).

of whether these materials also comply with other scaling laws for
superconductors44,45 requires more experimental data on normal-
state resistivity ρ(T)31,46–48 and ground-state London penetration
depth λ(0).1,49,50

Here, we report the results of our search for a universal Fermi
velocity in NRTS materials, based on an analysis of the full inven-
tory of values for the ground-state upper critical field Bc2(0) in
these materials. We find that a universal Fermi velocity, vF,univ, does
indeed exist in NRTS materials and obeys the empirical law

vF,univ =
1

1.3
× 2Δ(0)

kBTc
× 105 m/s, (2)

where kB is Boltzmann’s constant and Δ(0) is the ground-state
superconducting energy gap.

II. DESCRIPTION OF APPROACH
In the Bardeen–Cooper–Schieffer (BCS) theory of supercon-

ductivity,51 the ground-state coherence length ξ(0) and the ampli-
tude of the ground-state energy gap Δ(0) are linked through the
expression

ξ(0) = h̵vF

πΔ(0) , (3)

where h is the reduced Planck’s constant. BCS theory also involves a
dimensionless ratio

α = 2Δ(0)
kBTc

. (4)

Substitution of Eqs. (3) and (4) into Eq. (1) gives the depen-
dence of the ground-state upper critical field on the transition
temperature:

Bc2(0) = [
πϕ0k2

B

8h̵2 ]
α2

v2
F

T2
c , (5)

where the multiplicative prefactor in square brackets is a constant:

A = [πϕ0k2
B

8h̵2 ] = 1.38 × 107 T m2/(s2 K2). (6)

Thus, if hydrogen-rich superconductors exhibit a universal
Fermi velocity vF,univ, then a fit of the full inventory of the Bc2(0)
vs Tc dataset to the equation

Bc2(0) = A f Tβ
c , (7)

where β and f = α2/v2
F are free fitting parameters, should reveal that

β ≅ 2, (8)

and, if this is the case, then the universal Fermi velocity vF,univ can be
calculated from the deduced free-fitting parameter f as

vF,univ =
α√

f
= 1√

f
2Δ(0)
kBTc

. (9)

It should be noted that α = 2Δ(0)/kBTc in highly com-
pressed hydrogen-rich superconductors varies within the
range4,8,12,27,42,49,52–55

3.2 ≤ 2Δ(0)
kBTc

≤ 5, (10)

where the lower limit is the value deduced from experiment42,50,52

and the upper limit is based on the many results obtained from
first-principles calculations, which always predict 4.3 ≤ 2Δ(0)/kBTc
in NRTS materials,4,8,12,27,53–55 including very high values of
2Δ(0)/kBTc ≅ 5.0 for some NRTS phases.4,8,12,27

III. EXTRAPOLATION MODEL FOR THE GROUND-
STATE UPPER CRITICAL FIELD

Equation (7) has the ground-state upper critical field Bc2(0) as
dependent variable. However, it is important to note that this value
can be determined by the use of several extrapolative models56–59

that utilize experimental Bc2(T) data measured at high reduced tem-
peratures T/Tc. The primary reason why there is a necessity for
extrapolative models is that all highly compressed hydrogen-rich
superconductors have Bc2(T → 0 K) > 20 T, which cannot be mea-
sured by the conventional and widely used Physical Property Mea-
surement System (manufactured by Quantum Design), for which
the highest measurable magnetic field Bappl = 9–16 T (depending
on the specific model). It should be also stressed that Bc2(T → 0 K)
for the NRTS compounds H3S, LaH10, YH6/YH9 and (La,Y)H10
are so high that even measurements at the best available quasi-DC
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magnetic field facilities worldwide31,48,60 cover only the range of
reduced temperatures 1

2 ≲ T/Tc.
In this paper, from the several extrapolative Bc2(T) models

that are available,56–59 we use the following analytical approx-
imate expression from Werthamer–Helfand–Hohenberg (WHH)
theory,61,62 which was proposed by Baumgartner et al.:59

Bc2(T) =
1

0.693
ϕ0

2πξ2(0)[(1 − T
Tc
) − 0.153(1 − T

Tc
)

2

− 0.152(1 − T
Tc
)

4
], (11)

where ξ(0) and Tc ≡ Tc(B = 0) are two free fitting parameters
(this equation is referred to as the B-WHH model hereinafter).
Equation (11) was originally proposed for the extrapolation of
Bc2(T) data for neutron-irradiated Nb3Sn alloys,59 and recently sev-
eral research groups have found that provides good approximations
for a variety of superconducting materials.4,63–68 On this basis, in the
present study, we used Eq. (11) as a good, robust and simple ana-
lytical tool to extrapolate the Bc2(T) curve to the low-temperature
high-field region.

It is a necessary to describe the criterion for extracting Bc2(T)
datasets from experimentally measured R(T, Bappl) curves. Sev-
eral criteria are available for the definitions of Tc, Bc2(T), and
Tc(Bappl), which have been discussed recently for the case of NRTS
in Ref. 69. We have found69,70 that the best match between the
electron–phonon coupling constant λe–ph extracted from R(T, Bappl
= 0) curves and the λe–ph computed by first-principles calculation
is obtained when Tc is defined at a value of the ratio R(T)/Rnorm
that is as low as practically possible (where Rnorm is the normal-state
resistance just above the transition). By analyzing the full inven-
tory of R(T, Bappl) data for NRTS materials herein, we have come to
the conclusion that owing to noise and slope issues with real-world
R(T, Bappl) curves and the fact that highly compressed superhydrides
contain several superconducting phases, the appropriate criterion is

R(T, Bappl)
R(Tonset

c , Bappl)
= 0.05, (12)

and we use this henceforth in this study.

IV. RESULTS
A. Unannealed highly compressed sulfur hydride

In the first paper on NRTS superconductors, Drozdov et al.1
reported R(T, Bappl) data for unannealed highly compressed sul-
fur hydride (P = 155 GPa) in their Fig. 3(a). By using the criterion
of Eq. (12) [which is R(T, Bappl)criterion

= 23 mΩ for the R(T, Bappl)
curves shown in bottom insert in Fig. 3(a) in Ref. 1], we extracted
the Bc2(T) dataset for this sample, which is shown in Fig. 2. Because
this Bc2(T) dataset covers a significant part of the full temperature
range 0 K < T ≤ Tc, there was no need to use an extrapolative fit, and
instead we fitted this dataset to the model in Ref. 52, which allowed to

FIG. 2. Upper critical field data Bc2(T) and data fit to Eqs. (13) and (14) for unan-
nealed highly compressed sulfur hydride (P = 190 GPa). The raw R(T , Bappl)
dataset was that reported by Drozdov et al.1 The deduced values of ξ(0), Δ(0),
Tc , and ΔC/γTc are shown on the figure. The 95% confidence bands are shown
by the pink shaded area. The fit quality is R = 0.9985.

deduce Δ(0), 2Δ(0)/kBTc, and ΔC/γTc (the last of which is the rela-
tive jump in electronic specific heat at Tc, with γ being the so-called
Sommerfeld constant):

Bc2(T) =
ϕ0

2πξ2(0)

⎡⎢⎢⎢⎢⎢⎣

1.77 − 0.43( T
Tc
)

2
+ 0.07( T

Tc
)

4

1.77

⎤⎥⎥⎥⎥⎥⎦

2

×
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − 1
2kBT

∞

∫
0

dε

cosh2[
√

ε2+Δ2(T)
2kBT ]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (13)

where the temperature-dependent superconducting gap Δ(T) is
given by71,72

Δ(T) = Δ(0) tanh[πkBTc

Δ(0)

√
η

ΔC
γTc
(Tc

T
− 1)], (14)

with η = 2/3 for s-wave superconductors.
We used Eqs. (13) and (14) to extract ξ(0), Δ(0), Tc, and

ΔC/γTc from Bc2(T) datasets for a variety of superconductors,
including two highly compressed hydride phases of H3S,52 SnH12,42

V3Si,73 and several iron-based superconductors.73 However, it
should be stressed that the approach using Eqs. (13) and (14) is only
applicable for Bc2(T) datasets defined by Eq. (12) or by a stricter
criterion.

One of the most important deduced parameters,
α = 2Δ(0)/kBTc = 3.2 ± 0.3, is in remarkable agreement with
the corresponding values deduced for highly compressed annealed
H3S (P = 155–160 GPa), α = 3.20 ± 0.0249 and 3.55 ± 0.31,52 and for
highly compressed annealed SnH12 (P = 190 GPa), α = 3.28 ± 0.18.42

The deduced ΔC/γTc = 0.7 ± 0.1 is also below the weak-coupling
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limit of BCS theory ΔC/γTc = 1.43, as is the corresponding value
for the annealed H3S material, ΔC/γTc = 1.2 ± 0.3.52 It should be
mentioned that to deduce ΔC/γTc with higher accuracy requires
more Bc2(T) data points, especially at T ∼ Tc. The deduced Bc2(0)
and Tc are given in Table I.

B. Annealed highly compressed hydrides
We processed reported R(T, Bappl) datasets for several annealed

highly compressed hydrides by using Eq. (12) to extract Bc2(T)
datasets. The obtained datasets were fitted to Eq. (11), and the
deduced values are given in Table I. These materials are as follows:

1. Sulfur superhydride H3S (P = 155 and 160 GPa), for which the
raw data were reported by Mozaffari et al.31

2. Cerium superhydride CeHn (P = 88, 137, and 139 GPa), for
which the raw data were reported by Chen et al.12

3. Lanthanum superhydride LaH10 (P = 120, 136 GPa), for which
the raw data were reported by Sun et al.60

4. Yttrium superhydride/superdeuteride YH6/YD6 (P = 172 and
200 GPa), for which the raw data were reported by Troyan
et al.4

5. Lanthanum–yttrium superhydride (La,Y)H10 (P = 182, 183,
and 186 GPa), for which the raw data were reported by
Semenok et al.8

6. Tin superhydride SnH12 (P = 190 GPa), for which the raw data
were reported by Hong et al.11

7. Thorium superhydrides ThH9 and ThH10 (P = 170 GPa), for
which the raw data were reported by Semenok et al.16

The respective fits are shown in Figs. S1–S7 in the
supplementary material.

C. Analysis of B c2(0) vs T c for superhydride phases
All deduced Bc2(0) and Tc values for superhydride phases are

collected in Table I, where we have also added data for the Th4H15
phase reported by Satterthwaite and Toepke.74

The full dataset from Table I is shown in Fig. 3, together
with the fit to Eq. (7). Although this dataset has a large scatter, it
can be seen in Fig. 3(a) that the free-fitting power-law exponent
β = 2.07 ± 0.14 is practically undistinguishable from the expected
value β ≡ 2 [Eq. (5)]. When β is the free-fitting parameter [Fig. 3(a)],
the deduced f = (1.19 ± 0.90) × 10−10 s2/m2 has a large uncertainty.
However, when β is fixed to 2 [Fig. 3(b)], the free-fitting parameter
f can be deduced with high accuracy as

f = α2

v2
F,univ

= (1.68 ± 0.08) × 10−10 s2/m2, (15)

from which we can obtain

vF,univ =
α

1.30 ± 0.03
× 105 m/s ≅ 1

1.3
× 2Δ(0)

kBTc
× 105 m/s. (16)

By substituting the lower [2Δ(0)/kBTc = 3.2] and upper
[2Δ(0)/kBTc = 5.0] limits of the ratio 2Δ(0)/kBTc [Eq. (10)] into
Eq. (16), we can establish the lower and upper limits of vF,univ in
superhydrides:

2.5 × 105 m/s ≲ vF,univ ≲ 3.8 × 105 m/s. (17)

The deduced vF,univ for hydrogen-rich superconductors
[Eq. (16)] is similar to the corresponding value for high-Tc cuprates,
vF,univ = (2.7 ± 0.5) × 105 m/s,37 if Eq. (10) is taken into account.

TABLE I. Deduced Bc2(0) and Tc values for hydrogen-rich superconductors for which raw R(T , Bappl) data are available to date.

Phase and data source Figures Pressure (GPa) Tc (K) ΔTc (K) Bc2(0) (T) ΔBc2(0) (T)

Unannealed sulfur hydride [Fig. 3(a) in Ref. 1] 2 155 13.9 0.3 6.3 0.4
Annealed H3S (Fig. 3 in Ref. 31) S1(a) 155 185 2 98.8 1.2
Annealed H3S (Figs. S1 and S2 in Ref. 31) S1(b) 155 196.1 0.6 71.1 1.1
Annealed H3S (Fig. 3 in Ref. 31) S1(c) 160 143.9 1.4 59.2 2.3
Annealed CeH9 [Fig. S7(a) in Ref. 12], cooling S2(a) 88 38.8 0.4 16.5 1
Annealed CeH9 [Fig. 1(c) in Ref. 12], warming S2(b) 139 88.6 0.3 22.2 0.7
Annealed CeH9 [Fig. 1(d) in Ref. 12], cooling S2(c) 137 81.9 0.7 18.4 0.7
Annealed CeH9 [Fig. 1(d) in Ref. 12], warming S2(d) 137 82.7 0.7 18.7 0.6
Annealed LaH10 [Fig. 3(a) in Ref. 60] S3(a) 120 174.8 0.8 90 3
Annealed LaH10 [Fig. 3(b) in Ref. 60] S3(b) 136 206.2 0.8 136 3
Annealed YD6 [Fig. S13(a) in Ref. 4] S4(a) 172 157.7 0.2 124.9 2.4
Annealed YH6 [Fig. S16(c) in Ref. 4] S4(b) 200 206.2 0.2 97.2 1.4
Annealed (La,Y)H10 [Fig. S27(b) in Ref. 8] S5(a) 183 203.5 0.2 101.6 1.8
Annealed (La,Y)H10 [Fig. S28(a) in Ref. 8] S5(b) 182 234 0.1 135.8 1.5
Annealed (La,Y)H10 [Fig. S28(a) in Ref. 8] S5(c) 186 234.5 0.1 134 1
Annealed SnH12 [Fig. 4(a) in Ref. 11], cooling S6(a) 190 62.8 0.4 9 0.2
Annealed SnH12 [Fig. 4(a) in Ref. 11], warming S6(b) 190 64.1 0.5 8.9 0.2
Annealed ThH9 [Fig. 4(a) in Ref. 16] S7(a) 170 151.2 1.5 32 0.9
Annealed ThH10 [Fig. 4(a) in Ref. 16] S7(b) 170 150.6 0.4 43.4 0.6
Th4H15 (Ref. 74) Ambient 8.2 0.15 2.75 0.25
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FIG. 3. Total Bc2(0) vs Tc dataset for hydrogen-rich superconductors deduced
in this work (Table I) and data fits to (a) Eq. (7) and (b) Eq. (5). (a) Free-fitting
β = 2.07 ± 0.14 and f = (1.19 ± 0.90) × 10−10 s2/m2; the fit quality is
R = 0.9361. (b) β = 2.0 (fixed) and free-fitting f = (1.68 ± 0.08) × 10−10 s2/m2;
the fit quality is R = 0.9354.

V. DISCUSSION
The primary assumption of the Migdal–Eliashberg (ME) the-

ory of electron–phonon-mediated superconductivity75–77 is that the
ratio of characteristic phonon energy hωD (where ωD is the Debye
frequency) to the Fermi energy EF is very small, hωD/EF ≪ 1. In
normal metals hωD/EF ≲ 10−2,78–82 and this is why ME theory is
quantitatively accurate. However, for many high-temperature super-
conductors, the application of ME theory cannot be justified. In
fact, in our previous studies,69,70 we deduced the Debye temperature
Tθ ≅ 1500 K, in highly compressed H3S from a fit of experi-
mentally measured temperature-dependent resistance R(T) to the
Bloch–Grüneisen equation.83,84 This temperature can be converted
into the Debye energy kBTθ = hωD ≅ 0.13 eV, and, considering
that the Fermi energy was deduced in our previous study52 as
EF = 0.5–1.0 eV, we can conclude that 0.13 ≤ hωD/EF ≤ 0.26, and
thus ME theory75,76 does not provide an exact description of highly
compressed H3S.

The first concern that nonadiabatic effects (i.e., effects beyond
ME theory75,76) are important in highly compressed H3S was
expressed by Pietronero et al.,82 who also pointed out that: “. . . The
fingerprints of non-adiabatic effects are: – position of the material in
the Uemura diagram;. . .” Although the traditional way to position
a material in the Uemura plot requires knowledge of the ground-
state London penetration depth λ(0) (which has only recently been
reported for H3S46), the present author utilized the ground-state
coherence length ξ(0) [deduced from the Bc2(T) data] and found52

that H3S falls into the unconventional superconductors band in the
Uemura plot.41 In later work,42,85–88 it was established that LaH10,
Th4H15, ThH9, ThH10, YH6, SH12, and H3(S,C) also fall into the
unconventional superconductors band in the Uemura plot. This
is direct evidence that the ratio hωD/EF in superhydrides has
values well above those typical of conventional superconductors,
hωD/EF ≲ 10−2.

On the basis of the derived universal Fermi velocity in super-
hydrides, vF,univ [Eq. (16)], we can conclude that the strength of
the nonadiabatic effects in a superhydride (as quantified by the
ratio hωD/EF) can be revealed if the Debye temperature Tθ of the
compound can be deduced from the normal part of the temperature-
dependent resistance R(T).69,70,86 It should be noted that the Debye
temperature in superhydrides varies from Tθ ≅ 870 K (D3S, P = 173
GPa69) up to Tθ ≅ 1700 K (R3m-phase of H3S, P = 133 GPa69).

An analysis of the first experimental R(T) data89 measured
for metallic hydrogen phase III (compressed at P = 402 GPa)
revealed that Tθ ≅ 730 K.70 If we assume that metallic hydro-
gen phase III complies with the established vF,univ [Eq. (16)]
and that it has 2Δ(0)/kBTc = 3.53 and exhibits no effective
mass enhancement, then the ratio hωD/EF can be estimated as
hωD/EF = 0.3. This implies that metallic hydrogen should exhibit
pronounced nonadiabatic effects,78–82 which could prevent the
emergence of a superconducting state in this metal at high
temperature.

It should be also mentioned that first principles calculations
(FPC) are an essential part of current NRTS phase searches.27 The
accuracy and powerful capabilities of FPC became obvious after
the pivotal prediction of the Im3m −H3S phase,90,91 which was
later discovered experimentally.1 Another achievement of the FPC
approach was demonstrated recently when Li et al.92 and Ma et al.93

reported the discovery of a calcium superhydride phase with transi-
tion temperature Tc = 200–215 K (at a pressure P = 160–190 GPa),
which was predicted by Wang et al.94 in 2012. However, it
should also be mentioned that the superconductivity predicted
by FPC in some binary systems (e.g., AlH3

95,96), has never been
observed experimentally. This implies that further development of
FPC techniques to take account of non-adiabatic effects is highly
desirable.

Overall, remarkable progress has been achieved in this field
from the first theoretical predictions of high-temperature super-
conductivity in metallic hydrogen97,98 and hydrogen-dominated
alloys74,99 five decades ago to the remarkable experimental and
FPC results1,27 reported recently. It should be stressed that all
the primary discoveries in the field (e.g., the direct searches
for and syntheses of the H3S, LaH10, and YH6 phases) have
come from a perfect conjunction of theory and experiment. An
excellent example of this is the story of the discovery of near-
room-temperature superconductivity in highly compressed sulfur
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hydride.1 In February 2014, Li et al.100 reported results of FPC
calculations for highly compressed sulfur hydride. These calcula-
tions showed that at P = 160 GPa, the sulfur hydride retains the
composition of H2S and that this compound exhibits a super-
conducting transition temperature of Tc ∼ 80 K. In November
2014, an alternative theoretical result was reported by Duan et al.,91

who performed thorough FPC using USPEX software101–103 and
predicted that sulfur hydride would decompose into a mixture of
elemental sulfur and an (H2S)2H2 phase at high pressure. This result
was in a good accord with an earlier report by Strobel et al.,104 who
showed experimentally that at P > 3.2 GPa, the H2S–H2 mixture
exhibited structural ordering with the formation of the (H2S)2H2
phase (with four formula units per unit cell). The predicted tran-
sition temperature for the (H2S)2H2 phase was Tc = 191–204 K at
P = 200 GPa.91 On December 1, 2014, Drozdov et al.105 reported a
milestone experimental result on the observation of Tc ≈ 190 K in
sulfur hydride compressed at P > 150 GPa.

Another remarkable story should also be mentioned here,
namely, the discovery of the Fm3m − LaH10 phase, for which
Tc ≅ 274–286 K at P = 210 GPa was theoretically predicted by Liu
et al.106 in June 2017. This NRTS phase was experimentally discov-
ered by Drozdov et al.107 on August 21, 2018, and, two days later,
Somayazulu et al.108 confirmed this discovery.

VI. CONCLUSIONS
In this study, we have proposed that hydrogen-rich super-

conductors exhibit a universal Fermi velocity vF , which is
given by empirical expression vF,univ = (1/1.3) × [2Δ(0)/kBTc]
× 105 m/s. Considering that the gap-to-transition temperature ratio
2Δ(0)/kBTc in hydrogen-rich superconductors varies within the
range 3.2 ≤ 2Δ(0)/kBTc ≤ 5.0, we conclude that vF,univ varies within
the range 2.5 × 105 m/s ≤ vF,univ ≤ 3.8 × 105 m/s.

The Debye temperature Tθ can be deduced from the
temperature-dependent resistance R(T) of the conductor,69,83,84 and
so this universal Fermi velocity vF in superhydrides [Eq. (16)] can be
used to calculate the ratio hωD/EF , which determines the strength of
nonadiabatic effects in the superconductor. Calculations for metal-
lic hydrogen phase III (compressed at P = 402 GPa) have shown
that hωD/EF = 0.3, which implies strong nonadiabatic effects in this
metal.

SUPPLEMENTARY MATERIAL

See the supplementary material for the Bc2(T) fits to Eq. (11) for
highly compressed superhydrides.
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